Contagion spreading on complex networks with local deterministic dynamics

نویسندگان

  • Pouya Manshour
  • Afshin Montakhab
چکیده

Typically, contagion strength is modeled by a transmission rate λ, whereby all nodes in a network are treated uniformly in a mean-field approximation. However, local agents react differently to the same contagion based on their local characteristics. Following our recent work [EPL 99, 58002 (2012)], we investigate contagion spreading models with local dynamics on complex networks. We therefore quantify contagions by their quality, 0 ≤ α ≤ 1, and follow their spreading as their transmission condition (fitness) is evaluated by local agents. We choose various deterministic local rules. Initial spreading with exponential quality-dependent time scales is followed by a stationary state with a prevalence depending on the quality of the contagion. We also observe various interesting phenomena, for example, high prevalence without the participation of the hubs. This is in sharp contrast with the general belief that hubs play a central role in a typical spreading process. We further study the role of network topology in various models and find that as long as smallworld effect exists, the underlying topology does not contribute to the final stationary state but only affects the initial spreading velocity. Contagion spreading on complex networks with local dynamics 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low prevalence, quasi-stationarity and power-law behavior in a model of contagion spreading

While contagion (information, infection, etc.) spreading has been extensively studied recently, the role of active local agents has not been fully considered. Here, we propose and study a model of spreading which takes into account the strength or quality of contagions as well as the local probabilistic dynamics occurring at various nodes. Transmission occurs only after the quality-based fitnes...

متن کامل

Low prevalence, quasi-stationarity and power-law distribution in a model of spreading

Understanding how contagions (information, infections, etc) are spread on complex networks is important both from practical as well as theoretical point of view. Considerable work has been done in this regard in the past decade or so. However, most models are limited in their scope and as a result only capture general features of spreading phenomena. Here, we propose and study a model of spread...

متن کامل

Clustering determines the dynamics of complex contagions in multiplex networks

We present the mathematical analysis of generalized complex contagions in a class of clustered multiplex networks. The model is intended to understand spread of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold...

متن کامل

Message spreading in networks with stickiness and persistence: Large clustering does not always facilitate large-scale diffusion

Recent empirical studies have confirmed the key roles of complex contagion mechanisms such as memory, social reinforcement, and decay effects in information diffusion and behavior spreading. Inspired by this fact, we here propose a new agent-based model to capture the whole picture of the joint action of the three mechanisms in information spreading, by quantifying the complex contagion mechani...

متن کامل

The spreading ability of nodes towards localized targets in complex networks

As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013